The Regularity, Predictability, and Travel Behavior in Urban Transit Mobility

Dr. Zhanhong Cheng
Postdoctoral Researcher
McGill University
zhanhong.cheng@mcgill.ca

About me

Postdoc at McGill University 2022—current

Education

- Ph.D., McGill University, 2018-2022
- B.Eng. and M.S., Harbin Institute of Technology (China), 2012-2018

Research interest

- Spatiotemporal data modeling
- Machine learning in transportation
- Travel behavior and mobility
- Sustainable transportation

Opportunity at McGill University

Lijun Sun, Associate Professor

- 1-2 PhD students for 2024 Fall 2025 Winter!
- Welcome to apply for postdoc.
- See https://lijunsun.github.io/

Introduction

A mobility pattern refers to the regular and repeated movements and behaviors of individuals or groups in a given geographical area over time.

In this talk:

- Mobility patterns in unban transit system
- Regularity
- Power law
- Chained travel
- Applications of mobility patterns
- Trip destination inference
- Passenger flow forecasting

Regularity

Individual regularity
An individual tends to repetitively visit similar locations at a similar time of the days/weeks.

Aggregated regularity
The boarding/alighting flow at a metro station is similar every day and every week.

How to measure the regularity

- Using entropy rate ${ }^{[1]}$ to measure the travel regularity of a users.

Predicting the next location

Entropy rate		Prediction accuracy
1%	$(0.0,0.5]$	0.992308
2%	$(0.5,1.0]$	0.825574
12%	$(1.0,1.5]$	0.712156
37%	$(1.5,2.0]$	0.564097
37%	$(2.0,2.5]$	0.480812
10%	$(2.5,3.0]$	0.376798
1%	$(3.0,3.5]$	0.278975

Location visiting frequency

	longitude	latitude	counts
$\mathbf{0}$	-73.779178	45.504268	61.0
$\mathbf{1}$	-73.809165	45.511794	21.0
$\mathbf{2}$	-73.683222	45.514318	7.0
$\mathbf{3}$	-73.622383	45.496095	4.0
$\mathbf{4}$	-73.674878	45.509570	2.0
$\mathbf{5}$	-73.813745	45.510917	2.0
$\mathbf{6}$	-73.706328	45.498340	2.0
$\mathbf{7}$	-73.831310	45.463755	2.0
$\mathbf{8}$	-73.616497	45.503281	2.0
$\mathbf{9}$	-73.671235	45.507773	1.0
$\mathbf{1 0}$	-73.632257	45.489807	1.0
$\mathbf{1 1}$	-73.676664	45.440399	1.0
$\mathbf{1 2}$	-73.589794	45.492502	1.0
$\mathbf{1 3}$	-73.625907	45.500586	1.0
$\mathbf{1 4}$	-73.740878	45.438603	1.0
$\mathbf{1 5}$	-73.619936	45.497891	1.0

The top few locations dominate.

Power law

The frequency of a passenger visiting different stations follows a power law.

$$
p(r) \propto r^{-\eta}
$$

In addition to the power law. There is a bi-central mobility pattern in transit systems.

Chained travel

- The next trip starts at the end of the previous trip.

- A typical application of chained travel in inferring trip destinations.

How mobility patterns help

Travel behavior
characteristics
:---
in smart card data

Trip destination inference

By chained travel:

- For linked trips: infer destinations by the origin of the next trip.

- For unlinked trips: lack an appropriate destination inference method.

Proposed method:

Probabilistic topic model

$$
\begin{aligned}
& P(d \mid t, o ; u) \propto P(t, o, d ; u) \\
& =\sum_{j=1}^{J} \sum_{k=1}^{K} \sum_{l=1}^{L} P\left(t \mid z_{j}^{t}\right) P\left(o \mid z_{k}^{o}\right) P\left(d \mid z_{l}^{d}\right) P\left(z_{j}^{t}, z_{k}^{o}, z_{l}^{d} ; u\right)
\end{aligned}
$$

Time topic distributions

```
P(d|t,o;u)\proptoP(t,o,d;u)
= \sum
```


- Four time topics have clear semantic meanings.
- T1: evening trips.
- T2: early morning trips.
- T3: afternoon trips.
- T4: late morning trips.

Origin-destination topic distributions
$P(d \mid t, o ; u) \propto P(t, o, d ; u)$
$=\sum_{j=1}^{J} \sum_{k=1}^{K} \sum_{l=1}^{L} P\left(t \mid z_{j}^{t}\right) P\left(o \mid z_{k}^{o}\right) P\left(d \mid z_{l}^{d}\right) P\left(z_{j}^{t}, z_{k}^{o}, z_{l}^{d} ; u\right)$

- For each user, we represent stations by their rank in visiting frequency.
- Diverse spatial distribution \rightarrow Similar behavioral regularities.
- Improve destination inference accuracy.
- We can find the power-law property in the distribution of origin/destination topic distributions.

User-topic distributions

```
P(d|t,o;u)\proptoP(t,o,d;u)
```


- Each user's travel behavior is characterized by a distribution over topics.
- The user on the left clearly has two types of frequent trips (probably a commuter).
- The user-topic distribution is a good feature for passenger clustering.

Probabilistic topic model

$$
\begin{aligned}
& P(d \mid t, o ; u) \propto P(t, o, d ; u) \\
& =\sum_{j=1}^{J} \sum_{k=1}^{K} \sum_{l=1}^{L} P\left(t \mid z_{j}^{t}\right) P\left(o \mid z_{k}^{o}\right) P\left(d \mid z_{l}^{d}\right) P\left(z_{j}^{t}, z_{k}^{o}, z_{l}^{d} ; u\right)
\end{aligned}
$$

- Estimate the destination with the largest probability given the origin and time.

Passenger clustering

Top: the dendrogram of the hierarchical clustering on 500 passengers. Bottom: the feature matrix for the clustering

Inference accuracy

Destination inference accuracy of unlinked trips in 10,000 passengers

Methods	Accuracy
SO	49.63%
ST	43.02%
SOT_O	48.93%
SOT_T	44.19%
Kernel-based [1]	50.51%
Rank topic	$51.43 \%(\pm 0.14 \%)$
No-rank topic	$31.14 \%(\pm 0.20 \%)$

- The proposed topic model improves the destination inference accuracy.
- Representing stations by their ranks improves the inference accuracy.
- The topic model can also be used to analyze passengers' travel behavior patterns.

Inference accuracy

- Using entropy rate to measure the travel regularity of a users.

Predicting the next location

Prediction
Entropy rate accuracy

1%	$(0.0,0.5]$	0.992308
2%	$(0.5,1.0]$	0.825574
12%	$(1.0,1.5]$	0.712156
37%	$(1.5,2.0]$	0.564097
37%	$(2.0,2.5]$	0.480812
10%	$(2.5,3.0]$	0.376798
1%	$(3.0,3.5]$	0.278975

Boarding flow forecasting

Traditional approaches:

Learn from time series

Proposed approach:

Using travel regularity and chained trips

- Local correlations.
- Overlook the generative mechanism of boarding flow.

Forecast

- Long-range correlations.
- Capture the trip generative mechanism.

Cheng, Z., Trépanier, M., Sun, L., 2021. Incorporating travel behavior regularity into passenger flow forecasting. Transportation Research Part C: Emerging Technologies.

Returning flow

Returning flow r_{t}^{s} : the number of people who finish their activities and start their return trips at time t by the same station s .

- More than 50\% of metro trips in Guangzhou are returning trips.

- Returning flow is highly correlated with boarding flow.
(1) A baseline boarding flow forecasting model: $\hat{y}_{t+1}^{s}=f\left(y_{1: t}^{s}\right)$.
(2) Using returning flow as a covariate in the forecasting: $\hat{y}_{t+1}^{s}=f\left(y_{1: t}^{s}, r_{t+1}^{s}\right)$
- The forecasting of (2) is better than (1).
- How to obtain r_{t+1}^{S} ?

Forecast the future returning flow

Estimate future returning flow: $\quad \hat{r}_{t+1}^{s}=\sum_{h=1}^{H} m_{t-h+1}^{s} p^{s}\left(\tau_{\text {boarding }}=t+1 \mid \tau_{\text {alighting }}=t-h+1\right)$

The effect of using the returning flow

Multi-step boarding flow forecasting of a station.

Business
area
Residential
area

Station	Model	30min (1 step)		1hour (2 step)		2hour (4 step)		3hour (6 step)	
		RMSE	SMAPE	RMSE	SMAPE	RMSE	SMAPE	RMSE	SMAPE
(a) Tiyu Xilu	SARIMA	334.06	12.92%	435.16	15.30%	547.35	19.88%	586.61	19.23%
	SARIMA $+\hat{r}_{t+n}^{S}$	$\mathbf{2 9 0 . 4 3}$	$\mathbf{9 . 8 7 \%}$	$\mathbf{3 2 8 . 9 0}$	$\mathbf{1 2 . 6 0 \%}$	$\mathbf{4 0 3 . 2 0}$	$\mathbf{1 0 . 8 2 \%}$	$\mathbf{4 6 5 . 0 9}$	$\mathbf{1 1 . 7 1 \%}$
(b) Luoxi	SARIMA	$\mathbf{7 5 . 9 4}$	$\mathbf{1 0 . 6 4 \%}$	$\mathbf{7 9 . 5 3}$	11.70%	88.49	$\mathbf{1 2 . 1 4 \%}$	90.16	$\mathbf{1 2 . 5 1 \%}$
	SARIMA $+\hat{r}_{t+n}^{S}$	$\mathbf{7 6 . 1 0}$	$\mathbf{1 0 . 6 0 \%}$	$\mathbf{7 9 . 4 3}$	$\mathbf{1 1 . 6 5 \%}$	$\mathbf{8 8 . 4 9}$	$\mathbf{1 2 . 0 8 \%}$	$\mathbf{8 9 . 9 7}$	$\mathbf{1 2 . 3 8 \%}$

1) Behavior-based method significantly improves long-range (multi-step) forecasting.
2) More effective for stations in business areas (Because of short activity duration).
3) Shed new light on forecasting under special events.

Estimated returning flow in an event.

Passenger flow during events

(a) Guangzhou Tianhe Sports Center Metro Station

(b) Seoul Subway Sports Complex Metro Station

Passenger flow forecast during events

Interpreting boarding flow forecasting with attention weights in a Transformer model.

Future directions

- Individual mobility prediction: for better trip planning recommendation.
- Address the privacy concern: even a few records of individuals' spatiotemporal locations can uniquely identify a person [1].
- Mobility synthesis: generate fake but realistic individual trajectories. The synthesized mobility dataset can be published without no privacy concerns.

- Generative models for urban mobility: generate full trajectories based on partially observed trajectories, e.g., generate full trajectories based on data only from metros.
[1] Gao, J., Sun, L., \& Cai, M. (2019). Quantifying privacy vulnerability of individual mobility traces: A case study of license plate recognition data.
Transportation research part C: emerging technologies, 104, 78-94.

The body of this talk is based on research during my Ph.D. study.
Supervisors:
Prof. Lijun Sun
Prof. Martin Trépanier

Thank you! Questions?

zhanhong.cheng@mcgill.ca

零 McGill
McGill Engineering Doctoral
Awards (MEDA)

Open access

- MULTRA provides a forum for high quality, cutting-edge research in transportation science and technology.
- Papers concerning multimodal integration or emerging transportation technologies are particularly welcome

Upcoming special issue:

Innovative applications of operations research and machine learning in traffic and transportation management

