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About me

Postdoc at McGill University 2022—current 

Education

▪ Ph.D., McGill University, 2018-2022

▪ B.Eng. and M.S., Harbin Institute of Technology (China), 2012-2018

Research interest

▪ Spatiotemporal data modeling

▪ Machine learning in transportation

▪ Travel behavior and mobility

▪ Sustainable transportation

Opportunity at McGill University

Lijun Sun, Associate Professor

• 1-2 PhD students for 2024 Fall 2025 Winter!

• Welcome to apply for postdoc.

• See https://lijunsun.github.io/

https://lijunsun.github.io/
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Introduction

A mobility pattern refers to the regular and 

repeated movements and behaviors of 

individuals or groups in a given geographical 

area over time. 

In this talk:

• Mobility patterns in unban transit system

• Regularity

• Power law

• Chained travel

• Applications of mobility patterns

• Trip destination inference

• Passenger flow forecasting

Generated with AI

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion
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Regularity

Individual regularity

An individual tends to repetitively visit similar locations at a similar time of the days/weeks.

Aggregated regularity

The boarding/alighting flow at a metro station is similar every day and every week.

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion
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How to measure the regularity

▪ Using entropy rate[1] to measure the travel regularity of a users.

Entropy rate

Number 

of users

More 

regular
More 

irregular

[1] Goulet-Langlois, G., Koutsopoulos, H. N., Zhao, Z., & Zhao, J. (2017). Measuring regularity of individual travel 

patterns. IEEE Transactions on Intelligent Transportation Systems, 19(5), 1583-1592.

Entropy rate
Prediction 

accuracy

1%

2%

12%

37%

37%

10%

1%

Predicting the next location

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion
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Location visiting frequency

61

21

7

4

2

2

1

1

1

1

1

2

2

1

1

The top few locations 

dominate.

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion
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Power law

The frequency of a passenger visiting 

different stations follows a power law.

In addition to the power law.

There is a bi-central mobility 

pattern in transit systems.

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion
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Chained travel

▪ The next trip starts at the end of the previous trip.

▪ A typical application of chained travel in inferring trip destinations. 

trip1
trip2

?

?
𝑜1

𝑜2𝑑1

𝑑2

trip1

trip2

infer

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion
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How mobility patterns help

Travel behavior 

characteristics

Regularity

Chained travels

Power law

Inference and forecasting

in smart card data

Trip destination 

Inference

Enhance

Station boarding 

demand forecasting

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion
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Trip destination inference

Unknown unlinked trips 

{(𝑡, 𝑜, ? )}

Known linked trips

𝑡, 𝑜, መ𝑑

Probabilistic topic model

𝑝(𝑡, 𝑜, 𝑑|𝑢)

Training

By chained travel:

▪ For linked trips: infer destinations by 

the origin of the next trip.

▪ For unlinked trips: lack an appropriate 

destination inference method.

?

?
𝑜1

𝑜2𝑑1

𝑑2

trip1

trip2

infer

Proposed method:

Inference

𝑝(𝑑 | 𝑡, 𝑜 𝑢)

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion

Cheng, Z., Trépanier, M., Sun, L., 2021. Probabilistic model for destination inference and travel pattern mining from smart card data. Transportation.



11/26

October 27th, 2023UT-ITE Student Chapter Urban Transit Mobility

Probabilistic topic model

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion
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Time topic distributions

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion

• Four time topics have clear semantic meanings.

• T1: evening trips.

• T2: early morning trips.

• T3: afternoon trips.

• T4: late morning trips.
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Origin-destination topic distributions

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion

• For each user, we represent stations by their rank in visiting frequency.

• Diverse spatial distribution → Similar behavioral regularities.

• Improve destination inference accuracy.

• We can find the power-law property in the distribution of origin/destination topic 

distributions.
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User-topic distributions

• Each user’s travel behavior is characterized by 

a distribution over topics.

• The user on the left clearly has two types of 

frequent trips (probably a commuter). 

• The user-topic distribution is a good feature 

for passenger clustering.

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion
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Probabilistic topic model

• Estimate the destination with the largest 

probability given the origin and time.

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion
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Passenger clustering

Top: the dendrogram of the hierarchical clustering on 500 passengers. 

Bottom: the feature matrix for the clustering

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion
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Inference accuracy

Unknown Trips 

{(𝑡, 𝑜, ? )}

Known Trips

𝑡, 𝑜, መ𝑑

Probabilistic topic model

𝑝(𝑡, 𝑜, 𝑑|𝑢)

Training

Inference

𝑝(𝑑 | 𝑡, 𝑜 𝑢)

Methods Accuracy

SO 49.63%

ST 43.02%

SOT_O 48.93%

SOT_T 44.19%

Kernel-based [1] 50.51%

Rank topic 51.43% (±0.14%)

No-rank topic 31.14% (±0.20%)

[1] He and Trépanier (2015)

Destination inference accuracy of unlinked trips 

in 10,000 passengers

Benchmark 

models

• The proposed topic model improves the 

destination inference accuracy.

• Representing stations by their ranks improves 

the inference accuracy.

• The topic model can also be used to analyze 

passengers’ travel behavior patterns.

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion
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Inference accuracy

▪ Using entropy rate to measure the travel regularity of a users.

Entropy rate

Number 

of users

More 

regular
More 

irregular

Entropy rate
Prediction 

accuracy

1%

2%

12%

37%

37%

10%

1%

Predicting the next location

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion
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Boarding flow forecasting

ForecastHistorical data

Proposed approach:

Using travel regularity and chained trips
Traditional approaches:

Learn from time series

Forecast

Metro

station

Activities

(work, shopping…)

This trip

The next trip

Come

Return

• Local correlations.

• Overlook the generative mechanism 

of boarding flow.

• Long-range correlations.

• Capture the trip generative mechanism.

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion

Cheng, Z., Trépanier, M., Sun, L., 2021. Incorporating travel behavior regularity into 

passenger flow forecasting. Transportation Research Part C: Emerging Technologies.
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Returning flow

Metro

station

Activities

(work,shopping…)

This trip

The next trip

Come

Return

Returning flow 𝑟𝑡
𝑠: the 

number of people who 

finish their activities and 

start their return trips at 

time 𝑡 by the same station s.

One-way 

tickets.
Returning flow

Others

• More than 50% of 

metro trips in 

Guangzhou are returning 

trips.

• Returning flow is highly 

correlated with boarding 

flow.

(1) A baseline boarding flow forecasting model: ො𝑦𝑡+1
𝑠 = 𝑓 𝑦1:𝑡

𝑠 .

(2) Using returning flow as a covariate in the forecasting: ො𝑦𝑡+1
𝑠 = 𝑓 (𝑦1:𝑡

𝑠 , 𝑟𝑡+1
𝑠 )

• The forecasting of (2) is better than (1).

• How to obtain 𝑟𝑡+1
𝑠 ?

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion
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Forecast the future returning flow

Estimate future returning flow:

The return time.

The activity duration.The arrival time.Alighting flow

T
im

e

Returning flow

Time

Return probability parallelogram (RPP)

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion
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RMSE SMAPE RMSE SMAPE RMSE SMAPE RMSE SMAPE

SARIMA 334.06 12.92% 435.16 15.30% 547.35 19.88% 586.61 19.23%

SARIMA 290.43 9.87% 328.90 12.60% 403.20 10.82% 465.09 11.71%

3hour (6 step)

(a) Tiyu Xilu

Station Model
30min (1 step) 1hour (2 step) 2hour (4 step)

The effect of using the returning flow

Multi-step boarding flow forecasting of a station.

SARIMA + Ƹ𝑟𝑡+𝑛
𝑠

Business 

area

SARIMA 75.94 10.64% 79.53 11.70% 88.49 12.14% 90.16 12.51%

SARIMA 76.10 10.60% 79.43 11.65% 88.49 12.08% 89.97 12.38%
(b) Luoxi

SARIMA + Ƹ𝑟𝑡+𝑛
𝑠

Residential 

area

1) Behavior-based method significantly improves 

long-range (multi-step) forecasting.

2) More effective for stations in business areas

(Because of short activity duration).

3) Shed new light on forecasting under special 

events. 

Estimated returning flow in an event.

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion
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Passenger flow during events

Irregular surges of metro passenger boarding demand

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion
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Passenger flow forecast during events

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion

Interpreting boarding flow forecasting with attention weights 

in a Transformer model.
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Future directions 

▪ Individual mobility prediction: for better trip planning recommendation.

▪ Address the privacy concern: even a few records of individuals’ spatiotemporal locations can uniquely 

identify a person [1].

▪ Mobility synthesis: generate fake but realistic individual trajectories. The synthesized mobility dataset 

can be published without no privacy concerns.

▪ Generative models for urban mobility: generate full trajectories based on partially observed 

trajectories, e.g., generate full trajectories based on data only from metros.

Mobility patterns      |      Destination inference      |      Passenger demand forecasting      |      Discussion

[1] Gao, J., Sun, L., & Cai, M. (2019). Quantifying privacy vulnerability of individual mobility traces: A case study of license plate recognition data. 

Transportation research part C: emerging technologies, 104, 78-94.
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Thank you!

Questions?

zhanhong.cheng@mcgill.ca

McGill Engineering Doctoral 
Awards (MEDA)

The body of this talk is based on research during my Ph.D. study.

Supervisors:

Prof. Lijun Sun

Prof. Martin Trépanier

mailto:Zhanhong.cheng@mcgill.ca
https://www.mcgill.ca/civil/
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Call for paper

Upcoming special issue: 

Innovative applications of operations research and machine learning 

in traffic and transportation management

• MULTRA provides a forum for high quality, cutting-edge 

research in transportation science and technology.

• Papers concerning multimodal integration or emerging 

transportation technologies are particularly welcome
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